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Full-potential embedding for surfaces and interfaces 

S Crampin, J B A N van Hoof, M Nekovee and J E Inglesfield 
Institute for Theoretical Physics, Catholic University of Nijmegen. Toernooiveld, 
NL6525ED Nijmegen, The Netherland6 

Received 22 August 1991 

Abstract. We extend the surface-embedded Green function tehnique lor calm- 
lating the electronic structure of surfafes and Interfaces by presenting a method 
for determining substrate embedding potentials which maks  no approximations to 
the substrate potential. We first present an alternative derivation of the surface 
embedded Green function method, to clarify the use of a planar surface in simulating 
embedding on a more complicated surface, and illustrate this with rigomus tests. 
Considering the care of a region embedded on two surfaces, we determine the con- 
ditions under which the resulting Green function may itself be used as a subrtrate- 
embedding potential, and thereby derive a procedm for obtaining an embedding 
potential which makg no approximation to the substrate potential. In the case of 
a substrate with semi-infinite periodicity this reduces to a self-mnristency relation, 
for which we describe a first-order iterative solution. Finally, a particularly efficient 
scheme for obtaining local properties within a surface or interface region is outlined. 
This constitutes a full-potential solution to the oneelectron S&dinger equation for 
systems of tw-dimensional periodicity, whose calculation time scaler linearly with 
the number of atomic plans. 

1. Introduction 

Calculations of surface or interface electronic structure fall broadly into two categories, 
those which correctly treat the semi-infinite substrate or substrates, and those which 
employ slab or supercell boundary conditions, In the latter, a surface is unphysi- 
cally located in the vicinity of other surfaces, either across a region of vacuum and/or 
a finite number of atomic layers, but they have the benefit that  conventional band 
structure techniques may be used. Indeed, they have achieved considerable success in 
the description of various surface properties, s u c h  as work functions, total energies, 
atomic reconstructions and magnetism, but their abilit) to describe individual states 
for comparison with surface spectroscopies such a s  photoemission is less well estab- 
lished. Wavefunctions are far more sensitive to boundary conditions than integrated 
quantities such as charge densities and total energies, and may interact significantly 
over many atomic planes. In addition, both slab and supercell provide a poor de- 
scription of the bulk continuum. The deficiencies of the slab or supercell boundary 
conditions become more acute when surfaces or interfaces with high Miller indices are 
considered, such as stepped surfaces and grain-boundaries, systems of importance to 
areas of catalysis and mechanical behaviour. The short interlayer separation requires 
the inclusion of a prohibitively large number of atoms in order to prevent interaction 
between neighbouring surfaces. 
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Techniques which provide a correct description of the transition from surface to 
bulk are usually based upon the Green function and include multiple scattering meth- 
ods siich as layer Korringa-Kohn-Rostoker (LKKR) (MacLaren e t  al 1989), where 
the semi-infinite substrate is incorporated via a reflection matrix which describes 
the scattering of electrons; tight-binding formulations which exploit the short-range 
nature of the overlap integrals (Pollmann and Pantelides 1978); the Green-function 
linear-muffin-tin-orbitals method (GF-LMTO) (Skriver and Rosengaard 1991) in which 
structure constants within the tight-binding representation are short-ranged; and the 
surface-embedding Green function method (SEGF) (Inglesfield and Benesh 1988). The 
SEGF method provides a full-potential solution of the Schrodinger equation within a 
limited region of space (containing the surface or interface), and the influence of the 
semi-infinite substrate is incorporated via  an energy-dependent non-local embedding 
potential which ensures the surface wavefunctions match correctly to bulk solutions. 
The embedding potential is a property of the substrate and need only be evaluated once 
for a given substrate direction (e.g. ( l l l ) ,  (110), . . .), but the energy dependence pre- 
vents linearization (in common with the LKKR and GF-LMTO methods). However, only 
one or two atomic layers are normally required to model a metal surface-considerably 
fewer than for slab or supercell techniques in which the interaction between neighbour- 
ing surfaces must be kept t o  a minimum-and 50 in addition to the improved accuracy, 
the SEGF technique can be a computationally efficient approach to determining the 
electronic structure of the surface and interfaces. 

The embedding potential can be related to the reflection.properties of the sub- 
strate. In previous applications this relationship has  been used to determine the 
embedding potential for a semi-infinite ‘muffin-tin’ substrate, in which the potential 
within the substrate is approximated by the spherical average within non-overlapping 
spheres centred upon the atomic sites and the volume average in the interstitial. The 
reflection matrix may then be determined by the well-known techniques of LKKR or 
low-energy electron diffraction theory (Pendry 1974). Whilst this provides an ex- 
tremely convenient method for determining the embedding potential, the limitations 
are obvious in that however accurate the solution obtained within the surface or inter- 
face region, it is limited by errors in the embedding potential. The inherent difficulties 
become more severe the less close-packed the substrate is. An additional problem arises 
from the irrcompatibility of surface and substrate potentials, which can result in artifi- 
cial charge transfer which reduces the stability of the self-consistent iteration scheme. 
Moreover, this can lead to spurious shifts in the determined position of surface states 
relative to  bulk band edges. 

In this article we describe a new approach by which the substrate embedding 
potential may be determined with an accuracy comparable to that achieved in the 
surface or interface region. Since the embedding potential need only be determined 
once, and subsequently read in when the surface potential is being iterated, we initially 
provide a justification for the use of an embedding plane to simulate embedding on 
a more complicated surface. This permits a simple representation of the embedding 
potential which is independent of the surface region, and requires significantly less 
memorystorage than the use of anon-planar embedding surface. We then indicate how 
the embedding potential for an arbitrary stackingof atomic planes may be constructed 
and present an efficient algorithm for generating the embedding potential o fa  substrate 
with semi-infinite periodicity. Finally, we conclude with some remarks on how local 
properties within the surface or interface may be most efficiently determined. 
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Figure 1. The region of interest (I)  is separated from the substrate (11) by surface 
sc . 

2. Embedding on a plane 

We begin this section by briefly summarizing the previous derivation of the SEGF 
method (Inglesfield and Benesh 1988), before providing an alternative derivation which 
clarifies the use of a plane embedding surface to simulate the true embedding plane. 

Consider a trial function .$(T) in region I (figure l), the region of interest. This is 
extended into the substrate (region 11) with $ ( T ) ,  an exact solution of the Schrijdinger 
equation at  energy E ,  which matches in amplitude to 4 over S,, the surface which 
divides regions I and 11. The expectation value of the Hamiltonian, which includes 
contributions from the discontinuity in the wavefunction derivative on S,, is 

d 3 ~ 4 * H 4  + A, d 3 r V H $  + $ sSc d2Ts (Va$/an, -$*a$/an,) 
(1)  E =  s, d 3 W 4  + d3r$*$ 

where n, is the surface normal (from 1 to 11). The substrate wavefunction $ may 
be eliminated from (1) by introducing G;', the surface-inverse of the bulk Green 
function a t  energy E with zero normal derivative on S, (Inglesfield 1981). Minimizing 
with respect to variations in E gives E = E and 

Considering variations in 4 ,  E is found to be stationary when 

H4 = E4 T in region I (3) 

and 

i.e. 4 satisfies the Schrodinger equation and has the correct logarithmic derivative on 
S, to match smoothly to a bulk solution at energy E. 
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By expanding 4 in a bmis and minimizing E with respect to variations in the 
coefficients, one obtains an effective Schrodinger equation whose solution yields the 
electronic structure. All information regarding the substrate enters through G,', the 
embedding potential, evaluated over S,. However, this causes some problems when 
it comes to implementing the method in a particular hasis, through difficulties in 
evaluating the surface integrals. A surface which respects the partitioning between 
substrate and surface atoms contains concave and convex sections where it curves 
around the muffi-tins (figure 2), whereas a plane surface, which permits a simple 
representation of the embedding potential, cuts through substrate muffin-tins, requir- 
ing the inclusion of substrate caps within the region I, and/or cuts through surface 
atoms, requiring the omission of surface atom caps. Inglesfield and Benesh (1988) 
argued that it is possible to tnhsfer the boundary condition contained in G;' from 
the complicated surface which avoids cutting through mufin-tin spheres to a simpler 
planar surface, by integrating through constant potential between the original surface 
and the new surface. We now show that this is indeed possible and show how the 
resulting embedding potential is obtained. 

Figure 2. An embedding surface. in this 
case for FCC (ZlO), which respects the par- 
titiming of atoms into surface and sub- 
strate atom in general consists of COR 

vex and concave caps due to protruding 
muffin-tins. Itansferring the boundary 
condition from this complicated surface to 
a Rat surface is greatly beneficial. 

To do this we consider embedding our region of interest, I, onto free space, and 
determine under what conditions our trial solution 4 is a solution of the SchGdinger 
equation within I with the correct boundary condition on S,, the curvy surface, when 
the embedding surface is S, a plane. S, separates regions I and A ,  and S represents 
regions A and 11; in region A we take the potential to be zero (figure 3). Let us define 
our trial solution within I + A and match on S to xv  a solution of the freeelectron 
Schrodinger equation at energy E .  As above the expectation value of the Hamiltonian 
is 

(5) 
L+A d3r4'H4 + J,, d3rx'HOx + f J, d2r,  (4*a4/anS - x*ax/an,) 

h,, d W - 4  + A, d3rx'x 
E =  

If G, is the free-electron Green function with zero normal derivative on S, so that 
(Inglesfield 1981) 

ax(T.) = -2 d2r:G;'(rS,r:)x(r:) rs on S (6) 
8% J ,  

_ _ _  
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minimizing (5) with respect to variations in E gives 

Varying 4, we find the energy is stationary when Hr$ = Er$ for r in region I + A and 
4 has the same logarithmic derivative on S as 2. 

We now note that in region A both Q and x satisfy the freeelectron Schrijdinger 
equation. Thus, since they possess the same amplitude and derivative on S, they will 
possess the same amplitude and derivative on S,. Hence, if we construct our free- 
electron solution x to have the same logarithmic derivative as an exact bulk solution 
on S,, on S i t  will have the necessary logarithmic derivative to ensure that Q too 
has the correct logarithmic solution on S,. Since our trial solution also satisfies the 
Scbrodinger equation in region 1, it is by construction the solution we desire. 

ow 
s , s  

Figure 3. Embedding the region of interest ( I )  onto a free-electron solution over 
surface S ,  with zero potential in the volume A between S and the true embedding 
surface, Sc. The conditions under which the trial d u t i o n  has the correct boundary 
conditions over Sc lead to a prescription Tor detamining the embedding potential 
on S. 

In the caSe of a substrate in which the true crystal potential is approximated by 
the muflin-tin form in the (infinitesimal) region of zero potential between atoms of 
different layers (and in particular on surface S, which curves around muffin-tins) a 
bulk wavefunction with wavevector kII may be written as 
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where kgz = 2E - (g+ bll 1 and R,,, is the reflection matrix of the semi-infinite 
half-space. Since this is also a solution of the free-electron Schrijdinger  equation at  
energy E,  if we continue this definition into the muffin-tin spheres and use this for 
x ,  then our free-electron solution has the same logarithmic derivative on any surface 
within the interstitial as the bulk wavefunction. If we w u m e  the origin z = 0 is 
on the embedding plane, then from (6) we can construct the kll-resolved embedding 
potential 

~ ~~ ~~ ~ ~~ ~ ~~ ~ 7 

- -2 ik [(I - R ) ( 1  +R)-'] 

2 sd (GF,LII )os' - 

This is the expression given by Inglesfield and Benesh (1988). 
I t  is relatively easy to show by matching Green functions that equation (10) repre- 

sents an expansion on surface S of the surface-inverse of the free-space Green function 
with zero normal-derivative boundary conditions (on S) which, integrated through 
to S,, coincides with the substrate Green function on this surface. Since both this 
Grcen function and our trial function satisfy the same differential equation within A ,  
satisfying the modified boundary condition on S is entirely equivalent to satisfying 
the original boundary condition on S,. Note that (9) is in fact a valid representation 
of a wavefunction outside any substrate (subject to in-plane periodicity requirements) 
truncated and matched onto free-space, so this argument is valid for general potentials. 

In figure 3 we have considered the case when plane S lies entirely on the substrate 
side of surface S,. In actual fact such a restriction is not necessary, and, for example, 
the plane S may be taken to be entirely on the surface side of S,. Re-writing (7) as 

E =  
d3r+* H4 + s,, d 3 ~ + ' H o 9  + f ss d2T,Vad/an, + ss d2r, s, d2T:VGF1d 

, .  ~ .... ~. 
hd3T&$ + SA d3T4*4 

(11) 

to distinguish integralion volumes, we note that when S is not entirely on the substrate 
side of S,, A and I overlap in this case. However, since we are attempting to minimize 
( l l ) ,  we are free to use different expansions of the trial function for A and I. Thus 
within 1, which includes the contribution from the atomic potentials, we can use the 
conventional linearized augmented plane-wave basis (LAPW) with an expansion i n  
solutions of the atomic Schrodinger equation within the muffin-tins, whilst in A, and 
on surface S ,  we can use the plane wave component of the LAPW. The resulting matrix 

To demonstrate the validity of the use of a plane embedding surface, we consider 
the case of an internal interface, a Cu/Ni/Cu (100) monolayer sandwich (figure 4). 
Embedding an internal interface is essentially the two-surface generalization of the 
previous analysis (Farquhar and Inglesfield 1989). The effective Schrodinger equation 
is obtained by minimizing (cf (7)) 

elements are then particularly easy to determine. ~~ 
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where AL (AR) is the volume between the curvy embedding surface Sg (S,“) and 
the embedding plane SL (SR). G;’ and G,’ are the embedding potentials of the 
left and right half-spaces which produce the correct logarithmic derivative on the true 
embedding surfaces. We expand 6 in an LAPW basis (X,(r; kIl))  and by varying the co- 
efficients to minimize E ,  obtain an effective Schrodinger equation. The corresponding 
Green function is given a t  energy E by 

where the matrix of coefficients is given by 

The density of states is determined by  integrating throughout the muffin-tin spheres 
the charge density, obtained from e(r;kll)  = lmG(v,v ;k l l ) /n .  Figure 5 shows a 
comparison of the density ofstates within the N i  muffin-tin evaluated using the above 
formalism, with various positions of the embedding planes, and that determined by 
the LKKR method (see MacLaren el a/ (1989) for further details of this part of the 
calculation) using an identical potential. We have used muffin-tin potentials for this 
comparison, bulk Cu potentials in the Cu substrate right up to the interface and a bulk 
Ni potential within the Ni monolayer. As in the conventional KKR method of band 
structure theory, the LKKR code uses a free space expansion within the interstitial 
and is thus exact for potentials of the muffin-tin form, spherically symmetric within 
non-overlapping spheres, zero elsewhere. The embedded Green function technique 
should be exact for all forms of potential, and so we expect both methods to produce 
comparable results. Despite the completely different approaches employed by the two 
methods, the LKKR results and those using embedding are in excellent agreement, 
indicating the validity of the use of a plane embedding surface. Note that we are 
comparing the muffi-tin density of states. By moving the embedding planes, the 
total density of states within the embedded region as a whole varies by virtue of the 
variation in the volume, but the contribution from the muffin-tin is constant. The 
remaining differences are numerical (for example, the two codes use different radial 
tabulations of the potentials) and finite basis sets. (The LKKR calculations used 29 g 
vectors and up to 3; the LAPI\’ basis consisted of 160 vectors, angular momentum 
expansions to 1 = 8 and the embedding potential was expanded with 29 reciprocal 
lattice vectors.) 

Our experience is that this degree of agreement does not extend indefinitely as the 
embedding planes are moved either toward the substrate or the Ni monolayer. In both 
cases differences appear a t  specific energy regions which increase as the embedding 
plane approaches the atomic planes. Those elements of the embedding potential which 
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Figure 4. The embedding of a (100) Ni monolayer in Cu. The Cu subshatea 
M replaced by embedding potentials on the planes Si, and SR. For the examples 
described in the text. the plants cut through both Ni and Cu m f i  tins. 

0.28 

25 t 0'27 

0.0 0.1 0.2 0.3 
Energy (HI 

Figure 5. Muffin-tin density of states at leu = (0 ,O)  (per spin-Hartree) for a (100) 
Cu/Ni/Cu sandwich. Four curves are plotted. The full CUTW is the LKKR mults. 
The broken curves are calculated with the embedded Grem function method with 
the embedding planes at (short dssh to long) 0.50,OSS and 0.60 times the interlays 
separation. The results show remarkable agreement, ss is evident from the inset which 
shows a section of the curve in detail. The density of states calculated within the 
varying embedded region whole clifferr by as much as 30% between the different 
embedding plaoe calculations. The energy contained an imaginary component of 
0.005 H. 

correspond to g with 1g + h, I* > 2E vary exponentially with changes in the position 
of the embedding plane, anh not only does the number of basis vectors required in 
the expansion (10) rapidly increase but errors increase due to the integration back 
and forth from the embedding plane to the embedding sutface. It is evident from 
figure 4 that for an interface between materials of similar atomic size, an embedding 
plane midway between atomic planes minimizes the distance over which the boundary 
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condition is transferred, and other than to demonstrate the validity of the embedding 
procedure there is little need to consider alternative embedding positions. 

One further problem, also occurring for general potentials, arises from the poor 
behaviour of the g basis for the expansion of the embedding potential as the interlayer 
separation decreases. This is analogous to the difficulties experienced with the LKKR 
technique in similar situations, where the g basis is used as an intermediate expansion 
of the propagator connecting sites in different layers. The  importance of additional 
basis vectors decreases exponentially a t  a rate dependent upon the interlayer spacing 
and 191; since small interlayer spacings generally correspond to large reciprocal lattice 
meshes, the problems are particularly acute, and may only be overcome by using an 
alternative expansion basis for the problematic terms. Here, the solution is to augment 
the surface plane wave expansion (10) with additional functions. 

3. Full-potential embedding 

We now consider how to determine a substrate embedding potential which goes be- 
yond the muffin-tin approximation. As mentioned previously, the accuracy of solution 
within the surface or interface is limited by the errors present in the embedding poten- 
tial. Although screening lengths within metals are sufficiently short for the effects of 
these errors to be small, the materials which may be studied are largely restricted to 
those which have a relatively close-packed crystal structure. Even then, the anisotropy 
of the charge distribution within the vicinity of the embedding plane can be under- 
estimated due to matching onto a muffin-tin potential, and a small degree of charge 
transfer between the substrate and embedded region, due to the incompatible poten- 
tials, can result in decreased stability during the self-consistent iterations and shifts 
in the location of surface/interface states. 

I t  was established in the previous section that it is possible to embed on a plane 
surface and take matrix elements of the embedding potential with the plane wave 
component of the LAPW when the embedding potential is obtained from the substrate 
Green function, integrated through zero potential between the curvy embedding sur- 
face which avoids cutting muffin-tins and the embedding plane, and which has zero- 
normal derivative on this plane. Consider the right half-space. Given an embedding 
potential, G&, , we can add on an additional volume I and determine the Green func- 
tion, G, using equations (13) and (14), where we leave G& unspecified at  present. 
This Green function is the projection within I of the Green function which satisfies 
the full Schrodinger equation within I + substrate, and the freeelectron Schrodinger 
equation within AL. The presence of G& acts as asecond boundary condition on G ,  
constraining the normal derivative. Therefore, if we specify G& = 0 on surface SL, 
G is the Green function for 1 + substrate which has zero normal-derivative boundary 
condition on SL, and G-’ is therefore an embedding potential for I + substrate. If 
we add an additional volume, 1’, so that SJR and A‘R are coincident with the previous 
surface SL and volume AL, the zero normal-derivative boundary condition integrated 
from YR through A’R results in the same boundary condition on SLR = Sk as was 
integrated through AL to give i t .  Thus the resulting Green function is smooth and 
continuous over all I’ + I +substrate and satisfies the Schrddinger equation in that 
volume. This procedure can then be repeated, the embedding potential describing the 
original substrate plus the additional volumes. If a muffin-tin substrate was employed 
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originally, adding regions in which a full potential description of the potential of the 
same material is used will decrease the errors in the embedding potential. Alterna- 
tively. starting fromsome arbitrary embedding potential, the zero matrix for example, 
and repeatedly adding identical volumes representing substrate atomic planes till con- 
vergence, will generate a full potential substrate embedding potential. 

To see how this works in practice, we expand the Green function (13) on surface 
SL when G& = 0 and invert to give the new embedding potential for the substrate 
plus one additional layer: 

Repeating this procedure allows the evaluation of the embedding potential for an 
arbitrary stacking of atomic planes. 

If the layers are identical and any parallel translation (rill) from layer to layer is 
incorporated within the embedding potential, the Hamiltonian and overlap matrices 
are unchanged. Thus the embedding potential with n + 1 layers is related to that for 
n layers by 

where 

Repeated iteration of (16) ultimately results i n  an embedding potential for a semi- 
infinite substrate, 111 effect the substrate is being assembled layer by layer, so although 
the procedure is guaranteed to converge (in the presence of a finite imaginary compo- 
nent. in the energy), typically the addition of many hundreds of layers is needed. This 
is analogous to the constructiorl of the reflection matrix in LKKR or the low-energy 
electron diffraction problem, where more efficient algorithms such as layer doubling 
are used to accelerate the convergence. Here, too, layer stacking does not constitute a 
practical algorithm for generating the embedding potential. Ilowever, we can develop 
a more efficient algorithm by defining 

F" = (G&)* - ERll [ C ~ L G " C ~ , ] - ' E ~ ~ ~  

(GR,lkll)ntL = (GR,'q)" - D" 

(18) 

so that F" = 0 defines the semi-infinite embedding potential. If F" # 0 then we 
determine a new estimate 

(19) 

such that 

Frit' = 0 ,  (20) 



Substituting (19) into (20 )  and retaining terms to first order in D" gives 

F" = D" - X"D"Y" 

Xn = E,,, [CS~EnCLR]-' 

Yn = [ C , R G " C ~ ~ ] - ~ E ~ ~ ~  

where (2 la )  may be solved by diagonalizing X" and Y" (Zhang et nl  1989). 
In figure 6 we compare the density of states obtained with the LKKR code and that 

calculated by embedding with the embedding potentials determined using this new 
algorithm. In this case, the system studied is a (100) Cu monolayer with embedding 
potentials describingsemi-infinite (100) Cu substrates-in effect, bulk Cu. The  density 
of states is evaluated at hll = (0.1,0.2) au, the embedding plane half-way between 
layers and the various parameters as before. Once again there is striking agreement 
between these two completely independent calculations. The iterative solution to (18)- 
(21) was obtained with the zero matrix as the initial guess for the lowest energy, and 
for subsequent energies (interval 0.005 H) the embedding potential for the previous 
energy was the starting guess. We have found this to be the most efficient and stable 
procedure. As may be seen from figure 6, for most of the energy range only two 
iterations are necessary t o  converge the embedding potentials, and it is remarkable that 
halving the interval to 0.0025 H between successive energies reduces this to one-in 
effect, providing moreinformation for no extra cost. The number of iterations required 
rises when the nature of the states in that energy range is changing rapidly. What 
differences exist between the LKKR result and the embedded monolayer calculation 
are probably due to the LAP" basis, in which only two basis vectors correspond 
to each of the four largest expansion vectors of the embedding potential. We have 
found that by using the the embedding potential obtained from the reflection matrix 
(equation (10)) as the initial guess, our algorithm converges to the same embedding 
potential as before but in  three iterations (for all the energies considered), with the 
largest changes occurring in precisely those matrix elements. A s  a word of caution, 
on occasions our algorithm has  failed to pick up the correct solution, converging to 
an embedding potential which results in unphysical charge distributions. However, 
this has only ever occurred when our initial guess has been particularly poor, such 
as the zero matrix within the d-band. We have also established that this algorithm 
can evaluate the embedding potential a t  energies with arbitrarily small imaginary 
components, with little increase in the number of required iterations, thus permitting 
extremely detailed analysis of surface s ta tes  

4. Closing remarks 

We have described how one may use an embedding plane to simulate embedding on a 
more complicated surface, and demonstrated the accuracy of such a procedure. The 
benefits arise from greatly simplified matrix elements, which may be evaluated with 
the plane-wave part of the LAPW basis functions. In addition, the embedding potential 
is a property of the substrate, independent of the surface or interface to which i t  is 
coupled. Therefore, i t  need only be evaluated once for a given substrate geometry and 
energy wavevector, and for all subsequent uses it may be read in. I t  is a tremendous 
benefit to embed on a plane, as the expansion is compact. 
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Figure 6 .  Muffin-tin density of s t a t 5  of bulk Cu at lell = (0.1,O.Z) BU (per $pi- 
Hartree) with (100) taken BS the perpendicular. The full curye is the result obtained 
with LKKR theory. The diamonds indicate valuer obtained by embedding a single 
(100) monolayer of Cu, the embedding potentials having been found using the iter- 
tive algorithm described in the text (equations (18)-(21)). The number of iterations 
required to converge the embedding potential, indicated by crosvs, are also discussed 
in the main text. Calculation paramelem and imaginaiy enersy were identical to the 
Cu/Ni/Cu sandwich calculation. 

We have, theu, presented an  algorithm for determining an embedding potential 
within the same framework as the subsequent evaluation of the surface or interface 
electronic structure. It is relatively easily implemented within the same program, and 
may be used to obtain an embedding potential with no shape approximation-unlike 
in previous applications of the embedding Green function method. The algorithm may 
be used to construct an embedding potential for an arbitrary arrangement of atomic 
planes-with the constraint that they possess the same in-plane periodicity-and in 
the case of a semi-infinite periodic substrate a particularly efficient iterative scheme 
has been described. 

Even when the structural aspects of the surface or interface electronic structure 
problem are correctly treated. rather than approximated by slabs or supercells, the 
region of interest may contain a relatively large number of atoms. A t  a simple grain- 
boundary, for example, the electronic structure takes many atomic planes before i t  
is bulk-like (Crampin e t  a1 1989). With the straightforward application of the LAPW 
basis to this problem, the calculation time scales roughly with the cube of the number 
of atomic planes, since matrix inversion is an N 3  process. However, i t  is possible 
to obtain local information such as the charge density more efficiently, through the 
embedding procedure. Consider the region of interest partitioned into subvolumes, i = 
1.2, .  . . , n+ 1, shown in figure 7. A natural partitioning would assign one atomic plane 
to each subvolume, and at  a surface the vacuum region would occupy one subvolume. 
The substrates have been removed and replaced by embedding potentials on SL and 
SR, in the case of a surface one of these being the free-electron or coulomb embedding 
potential, depending upon t,he treatment of exchange and correlation. We now use 
(15) to obtain the embedding potential for substrate + volume 1,  on surface S' which 
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separates it from volume 2. 

Repeating, we can obtain all the necessary embedding planes for left embedding 

The embedding planes for right embedding may be obtained by the reverse process, 
starting from the right substrate and adding additional volumes. 

These embedding potentials may then be used to embed the separate subvolumes and 
determine the charge density. 

..I 

1 2 3  n n+l 
sub-volumes 

Figure 7 .  The atomic planes within the surface c.r interface region m a y  be =signed 
to separate subvolumes, and treated independently via embedding potentials. 

The benefit of this approach is that separate LAPW expansions may be made 
within each subvolume, and that the corresponding matrix inversions are performed 
on considerably smaller matrices. Incorporating an additional atomic plane, assigned 
to a new subvolume, does not increase the dimensions of the matrices to be inverted, 
and hence the approach Iias: a linear scaling of the calculation time with the number 
of atomic planes Of course one rarely gets something for nothing, and in this case 
the speed increase accompanies a loss of information. The off-diagonal elements of the 
Green function in the position representation are no longer available over the whole 
region, but only within each separate subvolume. In practice, this is information rarely 
used. 
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